
Math 4200
Monday November 30
Chapter 5:  5.1-5.2 conformal maps and fractional linear transformations, continued.  A 
geometric way to understand FLT's in terms of the Riemann sphere.  (movie!)  Intro to 
Riemann surfaces, leading into Daniel's presentation.

Announcements:  I changed the due date for last week's homework 13 to be tonight at 
midnight.  

 

1sthalf Prof K
2nd half Daniel



Math 4200-001
Week 14 concepts and homework

5.1-5.2
Due Friday December 4 at 11:59 p.m.

This final homework assignment is optional - if you do it, you can choose to use it for 
30% of your final exam score. Unlike on our midterms and on the final exam itself, I 
encourage you to collaborate on this assignment as if it was a regular homework 
assignment.

5.1:   10, 11, 12.
5.2    1, 4a, 6, 7, 9, 10, 17, 24, 26.

w14.1  Use the result of 5.1.12 to show that the only conformal bijections of the 
Riemann sphere are given by the fractional linear transformations.  Hint:  If a conformal
bijection of the Riemann sphere maps  to  then restricting it to  yields a 
conformal bijection of  to itself.



Remember that on Friday we checked that FLTs map the set of circles and lines to itself.
 Also, they are bijections of the Riemann sphere .  
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There are interesting ways to visualize FLT's on the Riemann sphere.  Recall, we talked 
about the identification of the Riemann sphere  with the unit sphere S2 3  
when we were discussing the classification of isolated singularities and the reason for the
word "pole" when describing the case of Laurent series which have a finite number of 
negative powers.  Below is the picture I drew at the time, of stereographic projection 
from the unit sphere S2 3  to the x y coordinate plane identified with , and its 
inverse transformation.  One can show algebraically that circles on the sphere correspond
to circles and lines in  under stereographic projection.  In fact, if the sphere circle goes
through the north pole, then the image in  is a straight line.  Otherwise the sphere 
circle corresponds to a -circle!

In this way one can identify FLTs as being magically related to the natural Euclidean 
motions of a sphere 3  - namely translations and rotations and their compositions, 
combined with various stereographic projections from those displaced spheres.   Here's a 
fun short video in that vein

https://www.youtube.com/watch?v=0z1fIsUNhO4
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Using FLTs  to construct various conformal transformation:  Notice that 

f z = z a
z b

c b
c a

maps
a 0

 b
 c 1.

Since 3 points uniquely determine particular circles and lines one can use FLT's to map 
any circle or line to any other circle or line.

Using functions of this form, and their inverses, one can construct FLT's to map triples 
of points to triples of points:

a
b
c

   
d
e
f

.

Thus you can map any line or circle to any other line or circle.  If you're trying to build 
a conformal map from one domain to another and parts of the domains are bounded by 
circular arcs, lines or rays, FLT's may be building blocks in your construction.

Example  Find a FLT from the unit disk to the upper half plane by mapping 
1 0

 1
 i 1

and making any necessary adjustments.   (By magic, once you know the boundary of the
disk goes to the real axis, you only have to check that one interior point goes to an 
interior point, or that the orientation is correct along the boundary, to know that you're 
mapping the unit disk to the upper half plane instead of the lower half plane.  The proof 
of the magic theorem is an appendix in today's notes.)
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Example  Find a conformal transformation of the first quadrant to the unit disk, so that 
the image of 1 i  is the origin.  How many such conformal transformations are there?  
It's fine to write your transformation as a composition.

quiz due wed Sp.m



More on the Riemann sphere and general Riemann surfaces:  

Definition  A Riemann surface S is a connected topological space S together with an
atlas consisting of charts U , 

A
 where the following three properties hold

(1)  
A

 U  = S and each U  is open and connected.

(2)  Each : U V  is a homeomorphism.  We can call the individual pairs 

V , 1   the pages of the atlas.

(3)  The transition maps between parts of the pages of the atlas  
1 :  U U U U  are all  conformal.



This definition makes sense when you think of what an actual geographical atlas is.  
Here are a couple examples:

  The complex plane itself, or any connected open set in the complex plane is a 
Riemann surface which has one possible atlas consisting of a single page, with U = V  
and = id.

   The Riemann sphere , which is homeomorphic to S2  3 , as we've 
discussed. The easiest atlas to use has just two pages.  One page describes everything 
except the origin.  The other one describes everything except .  

U1 = , 1 : U1 V1 = , 
 1 z = z

U2 = \ 0 , 2 : U2 V2 =

 2 w =
1
w

w

0 w =

Then U1 U2  is the punctured complex plane 0   and 

2 1
1 z = 1

z
;  1 2

1 w = 1
w

.
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Definition:  Let S1, S2  be Riemann surfaces, and f : S1 S2  be a function.  Then f  is
 holomorphic (or analytic) if and only if each of the corresponding maps from atlas 
pages of S1  to atlas pages of S2  are analytic.  Precisely, given an atlas for S1 :

U , : U V
A

and and atlas for S2
O , : O W

B
then f  is defined to be holomorphic if and only if  each triple composition

f 1 : V W

is analytic.

So for example, for a function f :   there are two cases to consider, in 
order to deduce whether f  is analytic near z0 , as a map of Riemann surfaces:

f z0 :    usual definition.

f z0 =  :  Does 1
f z

 have a removable singularity at z0?    In other words does 

f z  have a pole at z0 , so that f z0 = ?

The text defined a meromorphic function on  to be one which is analytic except for a 
countable number of isolated pole singularities.  This is the same as saying that
f :  is holomorphic as a function between Riemann surfaces.   

More generally, a function f : S  from a Riemann surface to  with isolated 
singularities is said to be meromorphic if and only if the function f  extends to be 
holomorphic as a function f : S .
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Warmup for Daniel's presentation:  When we have a Riemann surface it's important  to 
understand the analytic and meromorphic functions on that surface.  For example, entire 
functions on  are special, as are meromorphic functions on .  

By the Riemann mapping theorem, the spaces of analytic and meromorphic functions on 
any simply connected domain except  can be identified with the space of analytic and 
meromorphic functions on the unit disk. What about on domains with one or more 
holes?  How about domains which are other Riemann surfaces?  

Theorem:  Let  f :  be analytic.  Then f  is constant.  More generally, let 
S be any (connected) compact Riemann surface.  Then the only analytic functions f : S

 are constants.

proof:  analytic functions f z  are continuous, so if the domain surface is compact then 
then f z  attains its maximum value, say at P S.  Pick an atlas page for P, i.e.

P U , : U V .

Then f 1 : V  is analytic and | f 1  has an interior maximum value at 

P  so is constant on V  by the maximum principle.  Then argue that the set where

f  equals this constant is both open and closed!

Theorem:  The only meromorphic functions on the Riemann sphere are rational 
functions!

proof:  Because the Riemann sphere is compact the number N  of isolated singularities is 
finite.  First assume that  is not a singular point. Then at each singularity zk  let

Sk z =
m = 1

M
m bkm

z zk
m

be the singular part of the Laurent series.  Consider the difference

g z = f z
k = 1

N

Sk z .

Then g z  is bounded at infinity, because f z is and the Sk z  converge to zero there. 
Notice that g z  has removable singularities at the original singular points.  Thus g z  
extends to be entire and bounded, hence constant.  Thus f z  is a rational function.  



In the case that  is a singular point for f , then that means the Laurent series for 

f 1
z  at z = 0 has a finite number of negative powers, and so the "singular" Laurent 

series for the original f  near infinity consists of a polynomial, and the regular part at 
infinity is the portion of that Laurent series with negative powers.  Repeat the argument 
as above, except also subtract off this polynomial to get the bounded analytic function 
on  which must be constant.



Appendix:  Magic Theorem  Let A, B n   be open, connected, bounded sets.
Let f : A n,  f C1,   with dfx : Tx

n Tf x
n   invertible x A   (i.e. the 

Jacobian matrix is invertible).  Furthermore, assume
       f : A

_
n  is continuous and one-to-one.

      f  A =  B
       f x0 B  for at least one x0 A .
Then  f A = B  and f  is a global diffeomorphism between A  and B .  (i.e. f 1 : B A  
is also differentiable), and f 1 : B

_
A
_

 is continuous.

proof:  Step 1:  f A B .
             proof:  Let

O x A  f x B
Then
      x0 O
      O  is open by the local inverse function theorem, since x1 O  and f x1 B  
implies there is a local inverse function from an open neighborhood of f x1  in B , 
back to a neighborhood of x1  in A .
      O  is closed in A  because if xk O , xk x A  then f xk f x  and 
since f xk B  we have f x B

_
.  But since f  is one-one and maps the boundary

of A  bijectively to the boundary of B , f x  cannot be in the boundary of B .  Thus 
f x B .
       Thus, since A  is connected, O  is all of A , and f A B .



Step 2:  f A = B .
     proof:
       f A  is open (by the local inverse function theorem again), so f A B  is 
open.  
       And f A  is closed in B  because if

f xk = yk f A , with yk y B , 
then because A

_
 is compact, a subsequence xk

j
x A

_
 with f xk

j
f x = y, so 

x  A  because y B , so x A  and y f A .
        So, because B  is connected, f A  is all of B .

QED.

Remark:  In  you can also imply this theorem to unbounded domains, i.e. in 
 because of the following diagram, in which f2 f f1

1  satisfies the 
hypotheses of the original theorem:  


